
August, 2007 $9.00 Volume 14, No. 8

w w w . i p t o d a y . c o m
I. P. Today, 381 W. Northwest Hwy., Palatine, IL 60067 A Publication of Omega Communications

PROTECTING BRANDS OVERSEAS - ECONOMIC
GLOBALIZATION AND TRADEMARKS

THE INTERPLAY BETWEEN TRADE SECRETS
AND THE FIRST INVENTOR DEFENSE

NEW PATENT LAWSUITS -
RFCEXPRESS.COM

By Kelce Wilson, PhD, MBA, JD



BY KELCE WILSON, 
PhD, MBA, JD

Kelce Wilson, PhD EE, MBA, is a registered
patent attorney and provides software
security services to the US Department 
of Defense. He can be reached at 
kwilson@softwareIPattorney.com.

The first step in creating an effective
defense is learning about a threat,
because a poor comprehension of a

threat leads to inefficient and incomplete
protection efforts. Therefore, an understand-
ing of various types of software attacks, along
with their accompanying goals, is critical to
forming a solid software protection plan.
There are different types of threats to intel-
lectual property (IP) contained in software,
which include license violations, reverse
engineering and tampering.

Defensive protection methods that may
work against license violations may be
entirely useless to combat reverse engi-
neering or tampering. Similarly, protections
that may work against reverse engineering
or tampering may be ineffective to enforce
adherence to a license agreement. One rea-
son for this is that these three sample
classes of attacks may be carried out in fur-
therance of significantly different goals,
and may involve different attack methods.
“Attack” is the correct word, given the type
of malicious activity that is often directed
against software.

For an explanation of these different
classes of attacks, consider the following
hypothetical scenario: One of your clients
has invested heavily in developing the IP in
its flagship software product, and although
sales are doing well, the development costs
have not yet been fully paid off. The client
has since discovered that the software con-
tained a previously unrecognized inherent

capability, and minimal changes in the pro-
gram can drastically enhance the market
value of the software. Your client’s market-
ing department is ecstatic about selling an
upgraded version, and its engineering
department is relieved that few changes are
required. Word has spread among the user
community about the upcoming upgrade
and enhanced capability. Good news?
Perhaps not.

Unknown to the client, three copies of
the software were stolen from overseas cus-
tomers. One copy is about to be posted on a
website in a country that is notorious for lax
enforcement of IP rights. Due to national
pride or concerns over international eco-
nomic competitiveness, the government of
that country makes only token efforts to
enforce IP rights belonging to entities out-
side that country’s borders. The website
will allow unlimited, free, anonymous
download of the software. Another copy of
the stolen software was reverse engineered
in a secretive overseas facility, and your
client’s IP is being leveraged to develop a
product for a foreign competitor. Reverse
engineering involves learning the secrets of
how software operates. Because the com-
petitor’s engineers have studied your
client’s product, they have been able to
develop a remarkably similar computer
program, with some differences, but in a
rather short period of time and with a rela-
tively low cost. The competitor has thus
obtained an economic advantage, although
it will publicly proclaim efficient, indepen-
dent development. 

The third stolen copy fell into the pos-
session of someone with skill in software
tampering and who is also aware of the
planned upgrade. Tampering is changing a
copy of a computer file so that a program
that depends on that file performs differ-
ently. Tampering often requires some
degree of reverse engineering to find the
data file or the part of the program that will
be changed. A computer program patch,
similar to those used for bug-fixes and soft-
ware maintenance, has been developed
from the third stolen copy, and is about to
be posted on a website in another country
that is notorious for lax enforcement of IP

rights. The patch will soon be available for
free, unlimited, anonymous download and
will require minimal skill to use. With a few
mouse clicks, anyone with a copy of your
client’s first software version will have most
of the enhanced functionality of the
planned upgrade version. Anyone can then
visit the first website, download a copy of
the first version, and then visit the second
website to improve the pirated copy. 

Approximately a week before the internet
postings appear and the competitor releases
its product, your client visits your office to
discuss IP protection strategy for the
upgraded version. Your client is also about to
invest heavily in developing an unrelated
software product. What plans do you recom-
mend for protection of each product? How
well will those plans protect your client’s
interests in view of the upcoming events? 

Protection of the IP contained in soft-
ware often requires the integration of two
seemingly disparate bodies of knowledge:
computer hacking and IP law. Expertise in
IP law alone is not sufficient to plan for
effective protection efforts on behalf of your
client, because even with the broadest
issued patent claims, airtight trade secret
agreements, and thorough copyright regis-
trations, your client may watch helplessly
as off-shore hackers, pirates and websites
destroy the economic value of a significant
investment with impunity. Further, your
client may even be forfeiting sales and
licensing opportunities out of fear of IP
theft, even though the risks can be man-
aged to a reasonable level with the proper
methods.

In contrast with the dire scenario given
above, consider the following: Another
client does not have a consumer-ready
product, but has developed software mod-
ules that could be marketable to other soft-
ware developers for inclusion in their
products. However, the other developers
insist on receiving source code in their pro-
jects and that client is uncertain about the
other developer’s compliance with the
source code license agreements. Should
your client forego the potential sales?
Perhaps not. What if the software contains
trade secrets? Can source code be sold to
potentially untrustworthy parties while pre-
serving trade secret status? The answer
might be surprising.

The traditional modes of IP protection,
patents, trademarks, copyrights, trade
secrets and license agreements leave some

36 INTELLECTUAL PROPERTY TODAY AUGUST, 2007

An Introduction to Software
Protection Concepts



threats unaddressed, and even a complete
suite of legal protections does not enable
full realization of marketing opportunities
with reduced risks. For example, selling
humanly-readable source code to untrust-
worthy parties will likely destroy trade
secret status. Even the Digital Millennium
Copyright Act (DMCA) allows exemptions
for tampering and reverse engineering, so
long as the purpose is for ensuring interop-
erability with independently-developed
programs or compatibility with an operating
system (OS) upgrade. Digital Millennium
Copyright Act, 17 U.S.C. 1201(f). Note that
this exemption is available even for com-
petitors. However, just because a federal
statute preserves a right for your client’s
competitors and customers to reverse engi-
neer and tamper does not mean your client
must cooperate by allowing such endeavors
to be practical. The right protection tools,
properly applied, can provide a series of
revenue opportunities.

This article describes the roles of soft-
ware attacker and defender, goals and tac-
tics of attacks, various defensive options
along with their applications and limita-
tions, a basic protection paradigm, and
some resources. The protection strategy
proposed will be a combination of legal and
technical protections. While legal and
technical protections are in significantly
different disciplines, IP law versus com-
puter science, there is an area of overlap in
which the two affect each other. A simulta-
neous understanding of both allows for a
synergistic effect. For example, as will be
seen later, technical protections may be
used to enhance a software developer’s
ability to successfully identify piracy and
cracking attempts, as well as identify the
perpetrator, which can assist in developing
evidence for copyright prosecutions and
license violation disputes. In some situa-
tions, technical protections can even permit
a software developer to ensure that a theft
and reuse of IP leaves tell-tale signs that
can assist with a patent infringement suit.
However, a clear understanding of roles and
attacks is needed first.

HACKERS, CRACKERS, PIRATES AND
SCRIPT KIDDIES

Software attackers are often referred to as
“hackers,” although this label is overly
broad and often used incorrectly. The partic-
ular label used to describe a software
attacker should generally reflect a goal or

the tactics used, in order to allow meaning-
ful discussion. The term “pirate” may be
used to describe someone who merely
copies, or allows to be copied, a piece of
software in violation of a license agreement.
In this usage, the term “pirate” does not
imply technical ability, although a success-
ful act of piracy may require modification to
an executable binary in order to ensure a
copied program executes as desired. The
term “cracker” may be used to describe
someone with the ability to meaningfully
examine or modify an executable binary or
other critical computer file in order to
accomplish a particular goal. For example, a
cracker may modify a trial version of soft-
ware so that it has full functionality even
after the trial expiration date. Note that in
this usage, cracking includes reverse engi-
neering, even if no modifications to the
binary are promulgated. The term “script
kiddy,” although diminutive, is a convenient
term for describing those who use patches
produced by crackers in order to enable acts
of piracy or to enhance software functional-
ity in violation of a license agreement.

The previously presented scenario of the
three threats to a hypothetical client’s soft-

ware included all of the three roles just
described. The first website is a piracy site,
run and visited by software pirates. The
competitor used software crackers. The
computer program patch was developed by
another cracker and is posted on a cracking
site for download and use by script kiddies.
Anyone visiting both websites to obtain the
software and then to modify it with the
patch is both a pirate and a script kiddy.

Software defenders are typically the
developers, who are also often the owners.
However, this is not always the case; and
further, there is an industry developing in
which technical defensive measures that
are intended to frustrate and impede crack-
ers are inserted by experienced service
providers under contract. As an editorial
note here, I will emphasize that home-
grown technical security measures are
rarely effective, despite glowing promises
made by your client’s engineering depart-
ment. I have seen multiple situations in
which the most self-confident software
developers turn red-faced and start offering
lame excuses when their “hacker-proof”
safeguards are bypassed by “ethical hack-
ers,” i.e. crackers under contract to perform

INTELLECTUAL PROPERTY TODAY AUGUST, 2007 37

NEW PATENT LAWSUITS

Subscriber benefits include:

• Daily email alerts of the newest patent lawsuits

• 13,000+ patent lawsuits available in our database

• Search by plaintiff, defendant, patent number, and
more

• Patents and Classes are hyperlinked to their respective
pages at the USPTO

• One Click Complaint credits to download the complaint
of your choice

Start your FREE trial today by visiting www.rfcexpress.com



testing, as if the protections were trivial or
non-existent. In one incident, I was chal-
lenged with a piece of software that had
been protected by programming experts
with years of experience. I was able to
crack it in less than seven minutes after
installing it on my computer. The devel-
oper’s representative called me, so I took
the CD out of the mailing envelope and,
with him on the phone, completely
bypassed all the protections before he fin-
ished telling me about how solidly the pro-
gram was protected. 

As part of a software security education
campaign, I have given demonstrations in
which I modify trial software from a widely-
known developer to behave like a paid-up
version, in less time than it would take to
visit the developer’s website and pay the
registration fee. The demonstration is so
quick, that I have been asked to repeat it
because someone’s attention was momen-
tarily diverted and I was finished before
they thought I was going to start. Cracking
some software is not only cheaper, but can
even be quicker than taking the honest
route.

NETWORK ATTACKS VS.
SOFTWARE ATTACKS

Before examining the attacks in more
detail, it is useful to draw a distinction
between computer network attacks and
software attacks. While there is a funda-
mental difference, the required attacker
skill sets overlap significantly. In a com-
puter network attack, the attacker seeks to
obtain access to a computer itself, often but
not always, located remotely from the
attacker. Success by the attacker is
achieved when the desired level of access
is obtained, allowing files to be added,
deleted, moved, copied, executed, or modi-
fied. Once the attacker has gained access,
subsequent actions are generally fairly sim-
ple. Defensive measures may be taken after
an attack, such as removing a targeted com-
puter from a network. Preventative mea-
sures may also be updated to keep pace
with evolving network attack methods.
Even as difficult and frustrating as it may
seem for information technology (IT) man-
agers to deal with daily penetration
attempts and virus updates, the defensive
game against computer network attacks is
considerably easier to win than the defen-
sive game against software attacks.

This is because, in software attacks, the
attacker often controls the environment in
which the software resides. That is, the soft-
ware resides on the attacker’s computer and
an experienced attacker can modify and
restore files and data stored on the hard
drive and even in firmware. Thus, the
attacker can often try multiple methods,
develop tools, consult with others attackers,
and reload the software at the attacker’s
leisure, until succeeding in the goal. Even
though attack methods may evolve over time,
the software usually cannot receive further
updates from the defender to compensate. 

LICENSE VIOLATIONS, REVERSE
ENGINEERING, AND TAMPERING

Of the three types of threats mentioned
earlier, license violations, reverse engineer-
ing and tampering, the most easily under-
stood is license violations. Often this
includes piracy, in which unauthorized
copies of the software are disseminated and
used. Other license violations include
using software past an agreed-upon date or
for purposes prohibited by terms stated in
an agreement. License violations are typi-
cally motivated by a desire to gain an eco-
nomic benefit. 

Tampering has three primary motiva-
tions: removal of anti-piracy technical pro-
tections to facilitate a license violation,
sabotage, or to enhance operation.
Examples of enhanced operation include: 

disabling “nag screens” that pester a
user into paying for a program

enhancing a player’s abilities in multi-
player online games

removing limitations placed on a trial
copy of software, such as the inability to
save a file in a common format. 

Intercepting and operating on data
between two software modules may also be
defined as tampering, even if the software
modules themselves remain intact. 

Reverse engineering has two primary
motivations: facilitating tampering and also
industrial espionage in order to reduce the
development costs of a competing product.
Examples of license violation cases
abound, but some interesting cases that
describe tampering and reverse engineer-
ing include Krause v. Titleserv Inc., 402
F.3d 119, (2d Cir. 2005), Storage
Technology Corp. v. Custom Hardware
Engineering & Consulting Inc., 421 F.3d
1307, (Fed.Cir. 2005), and Leapfrog
Enterprises, Inc. v. Fisher-Price Inc., Mattel

Inc., No.Civ.A. 03-027-GMS, 2006 WL
891001 (D.Del. Mar. 30, 2006). All three
cases involve reverse engineering, but
Kraus and Storage Technology further
include tampering. Other issues are
involved in these cases, but it is interesting
to note that, although the evidence clearly
showed cracking attacks, the plaintiff did
not prevail in any of these three cases.

CODE LIFTING
Another form of attack, which is a

hybrid of tampering and reverse engineer-
ing, is code lifting. In a code lifting attack,
a software cracker learns enough about the
software to identify the portion containing
important IP, but rather than learning the IP
well enough to independently reproduce it,
the identified section of the software is
copied and used in a purportedly different
program. The competitor’s program may
actually be little more than window dress-
ing around the copied software so that it
appears to be different. With code lifting,
one software developer can leverage
another developer’s IP, even without under-
standing it. Lexmark Intern. Inc. v. Static
Control Components Inc., 387 F.3d 522,
(6th Cir. 2004) provides an example of code
lifting, and the plaintiffs allegations in
Davidson & Associates v. Jung, 422 F.3d
630 (8th Cir. 2005) imply code lifting. 

The remaining portion of this article will
describe protection measures that could
have been used by the plaintiffs in Krause,
Storage Technology, Leapfrog, Lexmark and
Davidson that likely would have achieved
their goals without the need for litigation.

LINES OF DEFENSE
Software protection has two primary

lines of defense: the attacker’s willingness
and the attacker’s ability. To successfully
crack software, an attacker must have both.
Thus, protection mechanisms may be
divided into two categories: deterrence-
based and technology-based. A technology-
based protection, i.e. a technical
protection, is one that introduces costs to
an attacker in terms of time, money and/or
skill. Examples include encrypting portions
of a program and moving critical data into a
USB dongle, although more complex and
generally more effective methods will be
described later.

Deterrent protections include the legal
mechanisms of patents, copyrights, trade-
marks, trade secrets and contracts.

38 INTELLECTUAL PROPERTY TODAY AUGUST, 2007



However, marketing pressures and social
pressures may also be used as deterrents.
For example, the movie industry has an
educational campaign included in many
movie previews that is aimed at convincing
consumers that copying movies and songs
is equivalent to shoplifting. 

In general, a deterrence protection
requires a reaction, whereas a technical
protection often does not. However, a tech-
nical protection can additionally be used to
assist a deterrent, such as by using a
“phone home” feature, in which an attempt
to crack or pirate a piece of software results
in the attacker’s computer sending an email
to a monitoring organization. Further, digi-
tal media files, such as mp3s, mpegs, and
even executable programs may be water-
marked or fingerprinted to assist in collect-
ing evidence for a potential lawsuit. 

Watermarking is the insertion of infor-
mation into a digital media file that allows
the file to be uniquely associated with the
author. For example, placing secret infor-
mation such as a digital signature in the file
will enable someone to assert authorship at
a later time, because it is unlikely that
someone else would have placed that same
information in the file. Fingerprinting is the
watermarking of files with different infor-
mation, based on where the file is sent. For
example, a software developer has three
orders for a program, encrypts each cus-
tomer’s name with public key cryptography
using the developer’s secret encryption key,
and then embeds the encrypted name of a
customer in the copy provided to that cus-
tomer. Thus, each customer gets a unique
version of the software. Later, if a pirated
copy of the program is discovered, the
developer can likely determine which cus-
tomer had been sharing the program.
Further, in an authorship dispute, the
developer can assert that because the cus-
tomer’s name was encrypted with the devel-
oper’s secret key, the developer is the
author of the original program and it was
not developed independently. 

Effective watermarking and fingerprint-
ing can assist litigation efforts, such as by
providing evidence of piracy or code-lift-
ing. However, both techniques involve com-
plicated technical issues, which are beyond
the scope of this article. For more informa-
tion, see Christian Collberg and Clark
Thoborson, Software Watermarking: Models
and Dynamic Embeddings, Symposium on

Principles of Programming Languages
(1999). 

Since an attacker needs to have both the
willingness and the ability, there are often
opportunities to use both deterrent and
technical protections simultaneously. Only
one needs to work, but often one type alone
may be insufficient. So redundancy, when
practical, is an effective defensive tactic. In
many circumstances, deterrent protections
are likely the quickest to fail.

FAILURE OF DETERRENCE
Unfortunately for deterrent protections,

there are at least four components that
could fail individually, reducing the effec-
tiveness of the protection. These are (1)
there must be a threat that offsets the
attacker’s perceived value of a successful
attack; (2) the entity making the threat
must be able to identify that a software
attack has occurred; (3) the identity of the
attacker must be reliably discernable; and
(4) the threat must be credible. A myriad of
problems could arise to derail a deterrent
protection, such as a patent being invali-
dated or trade secret status being lost; the
attacker may be able to remain anonymous
or be able to implicate an innocent person;
the attacker may be judgment-proof or out-
side of a cooperative jurisdiction; and it
may become socially unacceptable or too
expensive to carry out the threat. For exam-
ple, suing teenage girls for swapping mp3
files may be perceived negatively by some
aspects of society. Additionally, many soft-
ware developers may not be able to afford
litigation, even after discovering IP theft.

A further problem with deterrent protec-
tions is that the software may have such sig-
nificant value that the attack is worth
attempting. A rational software attacker will
likely use an analysis similar to the one
outlined here: The value of the attack is the
sum of the economic utility of a successful
attack, such as the purchase price of the
software or cost of independent develop-
ment, and notoriety or other ego factors.
The cost of the deterrent is the cost of the
threat discounted by the probability of
being caught and the probability of the
threat being carried out. If the discounted
cost of the threat is below the perceived
value of the attack, a rational attacker will
proceed. An irrational attacker, unfortu-
nately, cannot be deterred, and even more
unfortunately, many irrational attackers
may be quite skilled. 

Thus, attacks should almost always be
expected. Deterrence can only be expected
to work on a percentage of people, meaning
that a technical protection mechanism
should be considered if the expected per-
centage is not high enough. Because soft-
ware security is a specialized field, adding
technical protections may delay release
dates by affecting testing and maintenance,
as well as add the costs of consulting and/or
purchasing a protection insertion tool.
Economic models suitable for setting a
defender’s technical protection budget are
rather complicated. There are multiple pro-
prietary budgeting tools, the results of
which can vary significantly, but there are
no thorough models currently available for
public discussion.

Detracting issues with deterrent protec-
tions include the incompatibility of various
methods, such as the incompatibility
between the enabling disclosure required
for a patent and the secrecy required for
maintaining a trade secret. However, tech-
nical protections can work with all types of
deterrent protections identified above,
including some that can work with patents
equally well as with trade secrets. Further,
some technical protections can bolster a
software developer’s claim to trade secret
status, and even extend the circumstances
in which trade secret status can be claimed.

For example, in QSR Soft Inc. v.
Restaurant Technology Inc., No. 06C2734,
2006 WL 3196928 (N.D.Ill. Nov. 02,
2006), the plaintiff placed information on a
website and yet retained trade secret status.
The information was protected by a pass-
word, which the court apparently found to
be a reasonable safeguard for protecting
against disclosure to the public. Although it
is only speculation at this point, in the
future it may be possible for a software
developer to openly sell source code in
unencrypted text files, protected by obfus-
cation, which is described later, while pre-
serving trade secret status of the IP
contained in the software. If such a result
ever does become settled law, it opens the
door to selling source code modules for
inclusion in other developers’ products, but
without yielding some important IP rights
that would have previously been lost.

LICENSE ENFORCEMENT
The technical protections are best

understood when described in relationship
to the classes of attacks. Node locking, don-

INTELLECTUAL PROPERTY TODAY AUGUST, 2007 39



gles, media checks, and remote validation
are license enforcement techniques. Node
locking adapts the software or a data file
needed by the software to a specific com-
puter, so that if it is copied, minor differ-
ences between the two computers will
prevent the software from running. Dongles
are physical devices, often connected to a
USB port, that contain critical data or a
portion of the program, so that the program
should not run without the dongle con-
nected to the computer. The idea behind a
dongle is that, although copying software
may be easy, the hardware device cannot be
duplicated easily. However, dongle emula-
tors and patches that remove many pro-
grams’ dependence on dongles often appear
on the internet. Media checks are intended
to only run the software when the original
CD provided in the shrinkwrap package is
in the computer. However, there are many
tutorials on the internet for tampering with
software to bypass these checks. Remote
validation requires a computer to connect
to the internet and visit a website each time
a user wants to run the software. This isn’t
always transparent to the users, and can
often lead to unhappy customers when a
network goes down.

PREVENTING TAMPERING
Technical protections against tampering

include integrity checking, anti-debug
measures, and to some extent, obfuscation.
Obfuscation will be discussed in more
detail in relation to anti-reverse engineer-
ing, since that is the primary benefit.
Integrity checking is when the software
examines itself for changes. For example, a
piece of software may look at its own binary
code to determine whether a media check is
intact, or whether a cracker has modified
the program to omit the media check. If the
integrity check fails, the software has mul-
tiple options. It may simply stop, it may
repair itself with a self-healing routine, or it
may “phone home” by sending an email to
a monitoring organization to alert someone
to the crack. Or perhaps, if the program
outputs data, such as digital images, the
integrity check may put a hidden code such
as a watermark or fingerprint in the output
to indicate that the data was produced with
a cracked version of the program. 

Anti-debug measures warrant some
background explanation. To crack a pro-
gram, an attacker typically needs to disas-
semble it. This turns the binary file into a

series of assembly language commands
using a “debugger” so that a human can
understand what the program is designed to
do. An overly simplistic description of a
debugger is that it is a program which
allows a human to see what commands the
target software will send to the CPU before
the CPU gets the commands, and then mon-
itor the results of the commands when the
CPU receives them. With a debugger, a
cracker can test changes to instructions and
data to determine what modifications will
make the software behave the way that the
cracker, not the author, wishes it to behave.
Once the changes are determined, the
cracker may write a patch to automatically
modify the program, and post the patch on
a website for script kiddies to use on their
copies of the software. 

Preventing the use of a debugger greatly
impedes a cracker’s progress. Measures to
do this include debugger detection and pro-
gramming the software to perform a series
of tricks that violate some of the assump-
tions made by most debugger programs. For
example, debuggers often make assump-
tions as to which bits in the target file rep-
resent data and which represent
instructions. While cracking programs
(under DMCA exemptions!) I have seen
many different tricks, some of which are
exceptionally clever. But after seeing them
once, they’re usually easy to defeat in the
next piece of software that uses them.

PREVENTING REVERSE ENGINEERING
Anti-reverse engineering protections are

arguably the first line of defense against
cracking attempts, since reverse engineer-
ing is a necessary step in tampering, and
tampering is a necessary step in cracking
any technical protections used for license
enforcement. For example, a full line of
technical defense could include a license
enforcement method (such as a dongle or
node locking) to prevent piracy, anti-tam-
per defense (such as self-healing to protect
the license enforcement method) and a
“phone home” capability to report the
cracking attempt. Additionally, one of the
anti-reverse engineering protections
described below will hopefully discourage
the majority of crackers before they make
any meaningful progress.

The anti-reverse engineering protection
methods include encryption, anti-decompi-
lation, and obfuscation. Obfuscation, when
done correctly, can be a formidable anti-

reverse engineering protection. The goal of
software obfuscation is to change the pro-
gram so that a human cannot understand it,
but yet the computer returns the same
result. There are two primary types: source
code obfuscation and binary obfuscation.
Source code is generally what a computer
programmer writes and often bears some
resemblance to the English language.
Source code is put through a process known
as compilation to turn it into a binary file
comprising a series of numbers on which
the CPU operates. Good source code obfus-
cation will turn a nearly trivial program,
comprised of only a handful of lines, into
multiple pages of incomprehensible
instructions, even while resulting in the
same functionality. The earlier speculation
about preserving trade secret status in
source code modules that were openly sold
was referring to a potential use of source
code obfuscation. Binary obfuscation
rearranges the binary file, but it does not
affect the source code.

Encryption keeps the version of the file
stored on disk in a manner that it cannot be
analyzed either by a human or a debugger.
The program is only decrypted to an exe-
cutable state while it is running, and when
it stops, the decrypted version is erased
from memory. Memory grabbing is a com-
mon technique used by crackers to defeat
encryption protection. Decompilation is a
step beyond disassembly, because the goal
is to produce a high-level language, such as
C, which is easier to understand than
assembly code. Decompilation is a difficult
process and is easily derailed, so at least
for now, software defenders appear to be
winning this particular battle.

Technical protections should be used as
a second line of defense whenever a devel-
oper is uncertain about the enforceability or
cost of enforcing legal protections.
Examples include an overseas market in
countries with poor IP enforcement, use
scenarios in which piracy is unlikely to be
detected, judgment-proof users, the preva-
lence of irrational attackers who cannot be
deterred, and high value software that
passes a rational attacker’s cost-benefit
analysis. Other issues that drive a need for
technical protections include developer lia-
bility and potentially expanding export
opportunities. For example, guarding
against disgruntled programmers or viruses
may help reduce a developer’s liability to
customers. Some integrity checking tools

40 INTELLECTUAL PROPERTY TODAY AUGUST, 2007



may allow a program to monitor itself for the
presence of a backdoor inserted by a pro-
grammer who plans to blackmail the devel-
oper after quitting employment, and when
the developer has already sold the program
to important customers. Plaintiff attorneys
may eventually see a link between easily
cracked software and product liability tort
claims. Obfuscation and anti-tamper tech-
niques have applicability in foreign military
sales. Eventually, many DoD contractors
may see a requirement for technical protec-
tions inserted into their contracts, even for
purely domestic projects. 

PROTECTION ISSUES
In many situations, a good technical

protection defense does not need to be per-
fect or entirely impenetrable. Often, a
developer only needs to raise an attacker’s
cost up to the point where an attacker could
have better spent his time, skill and money
simply developing a competing product
from scratch. Unfortunately, since cracking
tools and techniques are evolving, techni-
cal protection measures have a shelf life
that is likely far below patent and copyright
terms. Good security will avoid a crack-
once, cracked-forever scenario, in which
even if the initial cost is high for a crack,
the subsequent marginal costs for extend-
ing the crack to other copies of the software
will be relatively low. There are ways to
protect against a single patch working for
multiple copies of the software, but such
methods are beyond the scope of this intro-
ductory-level article.

Software has a bad reputation for sched-
ule slips and cost over-runs, so introducing
new security requirements is likely to run
into opposition. And when the requirements
are introduced, you can expect them to
catch the blame for all sorts of problems.
There is some reason for apprehension
about software security. Software features
that ease maintenance, such as orderly,
sensible logic flow, often make cracking
easier. As a result, many changes that make
cracking harder also complicate mainte-
nance and bug-fixes by preventing the use
of patches. Further, many technical protec-
tions are not interoperable. To effectively
manage the challenges, security should be
planned from the first day of development. 

There are parallels between legal pro-
tection strategies and technical protection
strategies, such as budgeting based on IP
value, and being careful about overexpos-

ing protection mechanisms. Just as filing
too many patent applications may expose
too much IP, overusing a technical protec-
tion exposes it to multiple crack attempts.
One concern is that a protection used on
one piece of software may enable an
attacker to learn how to defeat another
piece of software that is similarly protected.
Attackers learn. Don’t provide them with
educational materials.

Cost and budget offers another way to
compare legal and technical protections.
Patents have a moderate initial cost, but
can have a prohibitive cost to enforce.
Trade secret protection may have a rela-
tively low initial cost, merely preparing and
signing NDA’s, but there are real costs in
terms of workforce inefficiency and missed
collaboration opportunities, due to restric-
tions on information flow. Copyrights may
be inexpensive to obtain, but enforcement
may create bad public relations. Technical
protections, in contrast, have only moderate
up-front costs, and generally no costs for
enforcement, because they operate auto-
matically. Typically, costs for technical pro-
tections will decrease over time as the
developer becomes more proficient and
experienced. Further, unlike patents, tech-
nical protections have no examination
requirement, so a developer can protect
anything the developer believes comprises
IP, even if a patent examiner would disagree
about novelty. 

BASIC STRATEGY
A basic software protection strategy is to

deter, detect, and drive up costs. Legal pro-
tection provides deterrence. Technical pro-
tections provide means for detection and
driving up attacker costs. To address the sce-
nario presented in the earlier part of this
article, I would recommend the following:
The client should fingerprint all copies of
the software it sells, if practical, but if not, at
least watermark it. If the overseas competitor
did any code lifting, a fingerprint could have
enabled the developer to identify the cus-
tomer from which the software was stolen.
Alternatively, watermarking could have
enabled the developer to identify whether
the competitor used code lifting to steal IP
and shorten its development cycle. A license
enforcement protection, itself protected by
self-healing, would prevent web site postings
of the program from cutting into sales. A
“phone home” protection that detected tam-
per attempts could assist in discovering the

identity of the skilled cracker, while obfus-
cation, either source code or binary, could
slow or prevent the cracker’s ability to
develop a patch for the new version of the
program. Self-healing can also be used on
critical portions of the program to prevent
upgrade via patch, but there may be practi-
cal reasons to limit self-healing to small por-
tions of the program, such as the license
management sections. There are a myriad of
other technical protections to recommend,
but the ones listed here form a decent starter
set that address many of the issues in the
presented scenario. 

RESOURCES
Following are some resources you may

wish to investigate for possible referrals for
your clients – either the specific listed
organizations or else competitors offering
similar products. I am not affiliated with
these organizations, nor do I have any
financial relationship with any of them, and
I am not endorsing any of the products. The
list is necessarily abbreviated for space,
and admittedly omits the majority of soft-
ware security providers. The descriptions of
even the included products omit many fea-
tures in the interest of brevity.

EnforcIT by Arxan is predominantly an
anti-tamper tool, but offers protection
against code-lifting and reverse engineer-
ing. EnforcIT inserts “guards” into the pro-
gram which perform integrity checks,
including self-healing, and also performs
binary file obfuscation. 

TransCoder by Cloakware is predomi-
nantly an anti-reverse engineering tool that
performs source code obfuscation. Anti-
tamper and anti-code lifting are inherent
capabilities, due to the strong likelihood
that any changes to the binary executable
will introduce undesirable consequences.

Dotfuscator by PreEmptive Solutions is
a binary obfuscation tool to prevent reverse
engineering, and also provides anti-tamper
and anti-code lifting protection out of
inherency. Additionally, PreEmptive offers
a “phone home” tool and service for moni-
toring of cracking activity.

Armadillo by Silicon Realms offers
license enforcement and anti-cracking pro-
tection. Sentinel by Rainbow and Hasp by
Aladdin are commonly-used dongle solu-
tions for license enforcement. IPT

INTELLECTUAL PROPERTY TODAY AUGUST, 2007 41


	IP_Today_Cover_Aug07
	wilson_IP_Today_Aug07.pdf

