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Abstract - This effort introduces a noise-tolerant 
algorithm for segmenting shadow regions in 
Synthetic Aperture Radar (SAR) images, using 
both edge detection and a region-grow method 
for filling between detected edges.  The 
technique introduced here recognizes that real 
shadow boundaries are neither precisely known, 
nor are infinitesimally thin, due to SAR 
phenomenology such as motion and layover.  As 
the identified shadow region transitions from 
actual shadow to target and clutter regions, a 
metric based on the rate-of-change of the region 
size allows automatic detection of the shadow 
edge.  This works in concert with traditional 
edge detection methods to identify boundaries 
more reliably. An evaluation of the quality of the 
shadow segmentation is presented using 
multiple quality measures, including a percent-
pixels-same measurement that is based on 
manual segmentations of the same image.  The 
algorithms and evaluation is accomplished on 
SAR target image chips obtained from the 
Moving and Stationary Target Acquisition and 
Recognition (MSTAR) program sponsored by the 
Defense Advanced Research Projects Agency 
(DARPA) and the Air Force Research 
Laboratory (AFRL). 
 

1  Automatic Segmentation 
 
   An automatic segmentation algorithm was 
developed earlier to identify target shadow 
regions for phenomenology studies and 
comparisons between artificially generated SAR 
images and their equivalent measurements [1].  
It assumed an infinitesimal boundary between 
shadow and non-shadow regions, and used a 
region grow algorithm to find the border.  One 
of the main discoveries of this initial work was 
that the edges of the artificial shadows and 
measured shadows differed significantly in 
terms of abruptness.  This is because the 

artificial shadows were calculated using the 
geometry of a CAD model and simulated 
illumination from a single point placed at the 
phase center of the SAR, while the actual SAR 
image was formed from integrating a series of 
illuminating angles.  In each of the different real 
illuminating angles, the shadow would shift 
slightly, giving three classifications, rather than 
just two, for the clutter pixels surrounding a 
target: always illuminated, always shadowed, 
and sometimes illuminated but otherwise 
shadowed.  This integration of shifting shadows 
produces a shadow region with blurred edges.  
As a result, while the region-grow metric would 
easily find the boundary of an artificial shadow, 
the boundary of a real shadow could often be 
missed.  Figure 1 shows a comparison of the 
metric used for automatic boundary detection 
when applied to a representative artificial and 
measured image pair.  The metric is the size of 
the identified shadow region with various trial 
values in a key comparison threshold; the 
algorithm searched for the largest jump in the 
metric for deciding on the proper value.  As can 
be seen clearly, the jump for the measured image 
is much smaller. 
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Figure 1: Metric comparison for representative 

artificial and measured image pair 
 
   Unfortunately, the response of measured 
images to the metric makes reliance upon the 
single input impractical.  When edge detection is 



applied to an image, however, a relative 
maximum value of the convolution results, in 
the direction of an outwardly growing region, 
can be used as a second input to the automatic 
edge condition identifier.  Such an additional 
input makes the algorithm considerably more 
robust.  In this scheme, the region can "grow 
into" the shape determined by the edge detection 
process, with use of the earlier metric reduced 
mainly to identifying "leaks" in the detected 
edge.  A leak, as used here means a break in an 
otherwise fully connected series of pixels 
identified as an edge.  That is, if a group of 
pixels identified as belonging to an edge, survive 
minimum-cluster size and threshold value tests, 
they should ideally form a continuous bounding 
region surrounding the shadow region.  This is 
rarely the case for measured images, though.  
The pixels that are missing and cause holes in 
the region are then named leaks. With simple 
neighborhood comparisons for the edge 
detection results, however, most small leaks can 
be patched before the region-grow begins. 
   After the initial edge detection kernels have 
been convolved with the image, and the result 
saved in a reference matrix, the algorithm 
identifies a point expected to be inside the 
shadow.  It traverses the image in all four 
directions, up, down, left, and right, searching 
for either a series of consecutive unbroken 
threshold violations, or a maximum edge 
convolution value.  This is shown in Figure 2 for 
a representative target chip. 
 

 
Figure 2: Initial Shadow Region Growth 

   The region growth is an iterative process 
which is tried again at all pixels reclassified 
from an initial state of "unknown" to "shadow", 
and is finished when no more pixels change 
classification.  Such a method can easily handled 
punctured regions, although it must be simply 
connected.  Second-pass clean-up consists of a 
reclassification of pixels within the outermost 
shadow boundary that were initially not 
identified as shadow, but are not part of a cluster 
meeting certain dimension requirements, and 
can also include smoothing the outer boundary. 
   Figures 3 through 7 demonstrate the automatic 
thresholding portion of the algorithm.  Figure 3 
shows a clean view of the demonstration target, 
and Figure 4 shows the detected edges of the 
shadow used in next section of the algorithm. 
 

 
Figure 3: Shadow Demonstration Target 

 
   The region grow program uses thresholds for 
both the interior/exterior decision and also the 
edge/not_edge decision.  If the edge/not_edge 
threshold is set too low, the inputs to the region 
grow portion will be full of false alarms.  The 
edge pixels are checked to determine if they 
belong to a line of some minimum length and a 
cluster of some minimum size, rather than just 
resulting from isolated noise points  After this 
clean-up, the edge threshold is set to the 
minimum necessary for predominant coverage 
around a simply closed region.  This part is still 
done by a human operator, so it is somewhat 
subjective.  Certain leaks of a few pixels wide 
must be tolerated in the real edge in order to 



eliminate false edges on the interior of the 
region. 
   A leakage potential is evident at the top of 
Figure 4, where the edge region thins, and the 
single pixel connecting the wider curves 
happens to fall below the edge threshold 
necessary for the region to grow to its “natural 
size”.  The natural size of the shadow is reached 
when the shadow boundary falls generally near 
the center of the thicker regions of pixels 
identified as possible edges.  The “natural edge” 
pixels are the darkest ones evident in Figure 4.  
The lighter colored pixels are false edges, so the 
edge threshold is automatically adjusted to 
prevent these from stopping the growth process. 
 

 
Figure 4: Detected Edges of Demo Target 

    

 
Figure 5: Shadow Threshold Set Too Low 

 
   Figure 5 shows the target with the shadow 
threshold below the finally selected value.  The 
uniform dark gray region of the image identifies 
the shadow region, and its border is the black 
band surrounding the shadow. 

   The shadow region fills most of the space 
inside the detected edges, but not quite all.  
Increasing the shadow threshold by 2 dB results 
in the shadow region shown in Figure 6.  It 
shows a relatively small change for a large 
change in the threshold, which gives the gentle 
slope of the metric in Figure 1, before the final 
threshold is chosen.  However, increasing the 
shadow threshold further, results in “spill-over” 
of the shadow and a dramatic increase in the 
region size reported by the growth algorithm. 
 

 
Figure 6: "Natural" Shadow Region 

 

 
Figure 7: Shadow Region Spill-Over From Top 

 
   This spill-over effect is clearly demonstrated 
in Figure 7 and corresponds to the large jump in 
the metric plotted in Figure 1.  The leak point 



can easily be identified as the thin part of the 
detected edge previously identified at the top 
Figure 4. 
   The algorithm starts with thresholds known to 
be too low, and increases until at least one-third 
of the pixels in the image are identified as 
shadows.  This is known to be too high, based 
on the nature of the target chips used.  The pixel 
counts corresponding to each threshold tested 
are examined for the largest jump.  When the 
most rapid change in the region size is 
identified, the algorithm backs the threshold 
down to the last value before the jump.  This is 
then the automatically selected threshold used 
for the final reported region. 
   Given that F(x,y,i) represents a binary image 
pixel in an N by M image of ones and zeros 
where ones are selected based on the threshold 
criteria i, the threshold value, T, can then be 
determined by: 
 

T = argi {max[S(min), S(min+1), …, S(max)]} 
 
Where S(i) is defined as 
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Here, min and max represent the minimum and 
maximum amplitude threshold used to segment 
the general region of interest.  
 

2  Segmentation Scoring 
 
   The evaluation of image segmentation is an 
ongoing area of research, with a variety of 
currently used metrics.  For this effort, three 
were chosen: percent pixels same (PPS) [2], 
partial-directed hausdorf [3] for omission errors 
(O-pdh) and commission errors (C-pdh), and the 
complex inner product (CIP) [4].  For 
comparison purposes, all three metrics are 
normalized to a scale of zero to one with one 
being perfect segmentation.  The PPS metric 
provides a spatial measure of the percentage of 
pixels that are common to two different 
segmentations, but does not provide a measure 
of the shape matching.  The O-pdh and C-pdh 

are combined as a single metric for shape 
matching; they measure the distances between 
the two edges.  The CIP is a scale-independent 
measurement of shape matching.  In general, 
shape is the most important factor for many 
ATR algorithms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 8: Manual and automatic 
segmentation of test shadow.  Top two 
sections compare automatic with two 

different manual segmentations, bottom 
section compares the two manual 

segmentations. 



 
Table 1: Quantitative metrics for evaluating various segmentation processes 

 Hand Segmentation # 1 Hand Segmentation #2 
CIP O-pdh C-pdh PPS CIP O-pdh C-pdh PPS 

Hand Segmentation # 1 1.00 1.00 1.00 1.00 0.23 0.25 0.27 0.79 
Hand Segmentation # 2 0.23 0.25 0.27 0.79 1.00 1.00 1.00 1.00 
Automatic Segmentation 0.39 0.14 0.14 0.59 0.52 0.03 0.04 0.53 

 
   Segmentations of clutter-filled SAR images 
are generally not easy to evaluate and score, 
since not only is the actual edge location not 
known, it may actually be a region with finite 
width.   Additionally, the noise level and grainy 
resolution can combine to make inconsistent 
even a careful manual process inconsistent, 
without knowledge of the target and a calculated 
mask for desired shadow shape.  An example is 
shown in Figure 8, which was segmented twice, 
on separate occasions, by the same individual.  
The top section has the results of automatic 
segmentation drawn as the inner contour and one 
of the manual segmentations as the outer 
contour, while the middle contrasts the 
automatic method with the second manual result.  
At the bottom of the figure, the difficulty of the 
task is clearly demonstrated by the differences 
between the two manual segmentations. 
 

3  Results 
 
The scores for the two hand segmentations and 
the automatic algorithm are shown in Table 1.  
A perfect score of 1.0 is obtained only when a 
certain result is compared with itself.  The 
automatic method does not produce as large of 
an area as either of the manual processes, so it 
scores lower on PPS, O-pdh, and C-pdh.  This 
can be expected, since these values depend on 
scale and spatial mass.  The automatic 
segmentation does do well with the CIP metric, 
which scores on shape only.  This suggests that 
the automatic technique is obtaining the key 
shape information from the SAR shadow.  The 
maximum detected edges, however, are still 
somewhat "inside" the shadow as identified by a 
human evaluator. 
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