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Foreword 

The generation of inonostatic RCS data is a coinputationally 
intensive task. This month’s column addresses some practical 
aspects of a method by which the inonostatic RCS can be 
approximated from bistatic RCS data, which is less expensive to 
compute. At the core of this is the Monostatic-to-Bistatic Equiva- 
lence Theorem. This is an approximate result, only valid up to a 
certain angle: Maj. Wilson presents a novel methodology for pre- 

dicting this angle. His approach is based on a metric, which takes 
into account target coinplexity. 

The backlog of papers for this column is presently quite 
small. If you have an interesting idea, or practical observations 
about developing CEM codes, or experience with a new program- 
ming methodology/environinent, which EM programmers would 
find of use, we encourage you to submit it for our column. 
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Abstract 

A metric is proposed that allows reliable prediction of the maximum bistatic angle for which the Monostatic-to-Bistatic Equiva- 
lence Theorem (MBET) can be used. Currently, the theorem leaves the term “sufficiently smooth” undefined, making selection 
of the maximum angle somewhat subjective. The proposed metric provides a quantitative evaluation of complex- 
ity/smoothness, and relates this to an angle limit based on an empirically derived statistical error profile. That is, the metric 
allows prediction of the maximum bistatic angle for which the MBET provides less than a 1.5 dB error at a confidence level of 
95%. Although the metric is presently only demonstrated for two-dimensional (2D) objects at a single polarization and error 
value, sufficient experiments following the same process can easily extend the method to three-dimensional objects, arbitrary 
polarizations, and alternate error tolerances. Such a capability allows for optimization of either monostatic collections used for 
prediction of bistatic data sets, or bistatic computations interpolated to monostatic results. 
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I. Introduction 

he Monostatic-to-Bistatic Equivalence Theorem (MBET) is a T usefiil tool for reducing the computation timc for inonostatic 
radar cross section (RCS) predictions by allowing interpolation of 
more easily computed bistatic data. This is important to the field of 
computational electromagnetics (CEM), since it has thc potential 
to reduce run times for large objects. 

The simplest vcrsion of the MBET states, "...the bistatic RCS 
of a sufficiently smooth, perfectly conducting target is equal to the 
monostatic RCS measured on  the bisector of thc bistatic angle" [ I ] .  
Although worded for estimation of bistatic scattering from an 
available monostatic data set, the equivalence goes both ways. A 
graphical depiction of the interpolation procedure is shown in Fig- 
ure I .  

For quasi-exact CEM techniques, the determination of sur- 
face currents is typically one of the more lengthy process steps. 
Once these currents have been found for a single illuinination 
angle, the calculation of bistatic scattering is fairly rapid. The abil- 
ity to reduce the number of separate illumination angles while 
using the MBET to prescrve the desired number of observation 
angles can provide significant savings in run times. This approach, 
however, introduces a iiced to balance speed and accuracy. Liberal 
use of the MBET over wide bistatic will result in fewer illuniina- 
tion angles, but errors can increase rapidly for complex objects [2]. 
Very limited use of the MBET or no use at all can prevent such 
interpolation errors. Uiifortunately, there is a real possibility that a 
significant portion of the rim tiinc will be unnccessary for achiev- 
ing a practical accuracy requirement. 

A method for predicting MBET performance is then useful 
for guiding determination of the interpolation-interval size. This 
effort proposes a method for predicting the maximum reliable 
interpolation angle whcn given a specific error toleraiice. RCS is 
essentially random for most targets that are large or complex 
enough to warrant study, and concave shapes posc special chal- 
lenges to the MBET. Errors must then bc treated statistically: the 
tolerance cannot be absolute but will rather have a level of confi- 
dence. The prediction process is demonstrated for two-dimensional 
(2D) objects with an error liinit of 1.S dB at a 95% confideiicc 
level. That is, use of the suggestcd bistatic liinit will result in 95% 
of the RCS values interpolated at this inaximuin angle solving to 
within 1.5 dB of the true monostatic value. It is possible to have 
jumps between different MBET interpolation intervals of 3 dB 
while still meeting the 1.5 dB limit, since the eiTor is given with 
respect to the true monostatic value, rather than discontinuities in 
the interpolated RCS pattern The metric also allows for different 
bistatic-angle recomiiieiidations at different observation angles for 
oblong objects. 

Results shown were obtaincd using an electric-field integral 
equation (EFIE) Method of Moincnts (MOM) calculation. The 
process is easily repeatable for any arbitrary polarization, error tol- 
erance, or level of confidence, so long as an appropriate nuinber of 
experiments are run in order to populate the required database. The 
error profile is then drawn empirically from thc database, which 
must contain sufficient MBET crror data for projecting significant 
values. 

2. Approach 

A total of 166 objects, with perfect-elcctric-conductor (PEC) 
surfaces, extending up to 25 wavclcngths ( A )  in diameter (the 
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Illumination Angles 

MBET Interpolation 
Intervals 

Figure 1. The use of Monostatic-Bistatic Equivalence Theorem 
(MBET) in computational electromagnetics (CEM). 

majority of which containcd sharp edges and concavities), were 
placed through the following process: 

1. 

2. 

3. 

4. 

5 .  

6 .  

7 .  

The monostatic RCS was fouiid around each object at 0.1" 
intervals, using thc two-dimensional EFIE MOM. This data 
formed the truth model for cadi object. 

The bistatic RCS was foound at 0.1' intervals for each 
illumination anglc at 1 O increments, around the objcct, 
resulting in a serics of test sets. 

For each of the test sets, MBET results wcre coinpared with 
the monostatic truth-nzorlel values for iiicremcnting bistatic 
angles until the error liinit was first reached. This was done 
for both directions: clockwise and counter-clockwise angle 
swceps. 

For each or the test sets, the last clockwise and 
countcr-clockwise anglcs were rccorded just before the 
error limit was breachcd. This gavc two angle reconimcn- 
datioiis with 0. I O rcsolution for each illiiinination angle. 
Whcn the data for all targets wcre compiled, no ineaniiigful 
differences cxisted between the different directions. 

For each illumination angle, for each object, a value of the 
complexity mctric was found, as dcscribed in the following 
section. Thc metric used as the reference value was the 
product of thc computcd complexity valuc and the maxi- 
mum cross-range dimension in wavelengths of the target at 
that particular aspcct angle. 

After all data had becn collected, the maximum angles werc 
groupcd according to the complexity metric value. The 
total data set included 119,520 points. 

Thc metric values were grouped into scveral bins. In each 
of these, the fifth-percentile angle was found and reported 
as the recomniendcd maximum for that specific complex- 
ity-value range. This meant that for a specific metric value, 
95% of the data points in the appropriate bin indicated that 
a larger angle could be used than was reported, while 
achieving less than 1.5 dB of error. 

Figure 2 shows some representative targets, although not all 
targets were similarly symmetric about 180". Due to the size of the 
data set, the entire process was automated, including target gen- 
eration. Generation of the data took inany weeks on a dedicated 
Pentium-class processor. 
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1 is inside and a 0 is outside the object. Hollow objects are 
not supported with this algorithm, although simple cavities 
are. 

Figure 2. Representative test objects. 

0 

Figure 3. Some simple shapes and their rotational projections. 

3. Metric Theory and Calculation 

The theory behind the metric will be presented for two- 
dimensional objects; extension to three dimensions is straightfor- 
ward. From a heuristic perspective, the simplest shape is a circle. It 
happens to also be a shape for which the MBET is reliable for 
rather wide bistatic angles. A method is then desired for measuring 
the deviation from a circular shape that increases monotonically 
with a subjective definition of complexity. Circles should return 
the lowest value for any object with a given minimum cross-range 
dimension. Squares should return nominally higher values, atid 
shapes with interior cavities should return higher values still. Both 
the measure of complexity and the cross-range dimension are 
needed for MBET accuracy predictions. 

The method used for quantifying complexity is to find the 
area enclosed by the -3 dB points on the ccntral lobe of the Fourier 
transform (FFT) of the rotational projection. The rotational projec- 
tion is a two-dimensional shape transformation of a two-dimen- 
sional object. The steps to calculate the metric are as follows: 

1. The object is facetized and represented by a matrix of 1s 
and Os. Matrix rows and columns are spaced 0.11 apart; a 
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2. The solid-object binary matrix is cropped and the centcr 
point is found. 

3. The angular resolution iiecessary to discriminate between 
the outer rows and columns of the matrix is found. 

4. A second matrix is created with the number of rows deter- 
mined by the angle steps needed to reach 360". The number 
of coluinns is determined by counting 0.11 steps in radius 
out to the furthest point on the object. 

5. Starting with an angle of 0 pointing straight upward from 
the center of the solid-object matrix, the first row of the 
new matrix is filled. As the radius steps outward, the new 
matrix is filled from left to right by testing the closest cor- 
responding point in the solid-object matrix. This is demon- 
strated in Figure 3, which shows some simple shapes and 
their rotational projections in dashed lines to the right. A 
circle becomes a rectangle during the shape transform, 
because for every angle, the radius is the same. 

6. The new rotational-projection matrix is cropped and its 
two-dimensional FFT is found. For a circular solid object 
that has a rectangular rotational projection, the FFT returns 
a sharp spike for the central lobe. Any deviation from a 
rectangular rotational projection will cause a widening of 
the center lobe. 

7. The -3 dB points are found in both dimensions of the FFT 
center lobe, and the distances from the center point are 
multiplied together. This gives an estimate of the area 
under the -3 dB portion of the lobe. 

8. Object complexity is defined by this area estimate. The 
metric value used in the table is the product of this com- 
plexity value and the cross-range dimension at each obser- 
vation angle. While the metric value is dependent on aspect 
angle, the complexity value itself is a single value for a 
given target. 

Figure 4 shows the relative value of the complexity value, as 
a circle is inorphed into a square by pushing the comers out and 
reducing the radius of curvature at the corners to a value of 0. 

Circle Square X 
Figure 4. The complexity for various shapes. 
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0 10 20 
Value of Complexity Metric 

Figure 5. The experimental results; the line shows the 5th 
percentile. 

3.7 

Table 1. The compiled results. 

8.2 

Metric Value: 
Cross-Range x 

Com lexit 

Maximum Reliable Angle 
Degrees 

2.4 10.1 

4.8 5.3 

2.4 
7.7 2.3 
8.1 2.2 
8.4 2.2 
8.7 
9.1 
9.6 

2.2 
2.1 
2.1 

10.1 
10.6 
11.1 

13.2 
14.4 1 .s 

2.1 
2.1 
2.1 

11.6 1.9 
12.4 1.8 

I 13.2 1.8 
14.4 1 .s 

Then, the shape morphing continues to fonn an X by moving the 
center part of the square’s sides toward thc centroid, until the cen- 
ters of the edges all meet at a single point. Thc value is generally 
monotonically incrcasing, with an intuitive increase in object coni- 
plexity. 

4. Results 

The results for the experimental procedure outlined in Sec- 
tion 2 are shown in Figure S. The gray rcgion is a scatter plot of the 
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maximum angles that were found in Step 4 of the procedure, plot- 
ted against thc complexity metric from Step 5, and further 
described in Section 3. The dark line represents the fifth-percentile 
angle values for metric valucs, as read along the horizontal axis. 
This data is repeated in Table 1 for clarity: angle units are degrees 
for the 95% confidence levcl of a 1.5 dB worst-case error. The 
groupings of data points above the main block are due to objects 
with no concavitics, and the points along the top of the plot reprc- 
sent circular or near-circular objects. 

5. Extension to 
Three-Dimensional Objects 

To apply this process to three-diincnsional objects, only four 
changes should be necessary: 

1. The two-dimensional FFT calculation should be replaced 
with a three-dimensional FFT. 

2. The arsa calculation of the -3 dB point in the center spike 
of the two-dimensional FFT should be replaced with a vol- 
ume calculation in the three-dimensional results. 

3. Four maximum angles should be found: increasing and 
decreasing values of both the azimuth and elevation angles, 
rather than just the clockwise and counter-clockwise angles 
found for two-dimensional objects. 

4. The two-dimensional projected area will be needed in place 
of a singlc cross-range dimension. 

Additionally, it is quite liltcly that some form of wavelet transform 
could take the place of the FFT, and could provide a more robust 
basis for the metric. 

6. Conclusion 

A metric has been proposed that allows reliable prediction of 
the maximum bistatic anglc for which the Monostatic-to-Bistatic 
Equivalence Theorem (MBET) can be used. It provides a quantita- 
tive evaluation of complexityismoothness and relates this to an 
angle limit, based on an empirically derived statistical error profile. 
That is, the metric allows prediction of the maximum bistatic angle 
for which the MBET provides less than a 1.5 dB error at a confi- 
dence level of 95%. Although the metric was only demonstrated 
for two-dimensional objects at a singlc polarization and error 
value, an explaiiation was provided for easily extending the proc- 
ess to three-dimensional objects, arbitrary polarizations, and alter- 
nate error toleranccs. This capability allows for optimization of 
either monostatic collections uscd for prediction of bistatic data 
sets, or bistatic computations interpolated to inonostatic results. 
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